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Abstract Ethanol blended petrol and biodiesel blended
diesel are being introduced in many countries to meet the
increasing demand of hydrocarbon fuels. However, techno-
logical limitations of current vehicle engine do not allow
ethanol and biodiesel percentages in the blended fuel to be
increased beyond a certain level. As a result quantification
of ethanol in blended petrol and biodiesel in blended diesel
becomes an important issue. In this work, calibration
models for the quantification of ethanol in the ethanol-
petrol and biodiesel in the biodiesel-diesel blends of a
particular batch were made using the combination of
synchronous fluorescence spectroscopy (SFS) with princi-
pal component regression (PCR) and partial least square
(PLS) and excitation emission matrix fluorescence (EEMF)
with N-way Partial least square (N-PLS) and unfolded-PLS.
The PCR, PLS, N-PLS and unfolded-PLS calibration
models were evaluated through measures like root mean
square error of cross-validation (RMSECV), root mean
square error of calibration (RMSEC) and square of the
correlation coefficient (R2). The prediction abilities of the
models were tested using a testing set of ethanol-petrol and
biodiesel-diesel blends of known ethanol and biodiesel
concentrations, error in the predictions made by the models
were found to be less than 2%. The obtained calibration
models are highly robust and capable of estimating low as
well as high concentrations of ethanol and biodiesel.
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Introduction

In order to meet the increasing demand of hydrocarbon
based fuels such as petrol and diesel, ethanol blended petrol
and biodiesel blended diesel are being introduced in many
countries with a certain permissible limit of ethanol and
biodiesel. Both ethanol and biodiesel are non-fossil fuels.
Ethanol can be fermented and extracted from natural
products, whereas biodiesel is mainly comprised of mono-
alkyl esters of saturated and unsaturated long-chain fatty
acids, derived from the transesterification reaction of
vegetable oils or animal fats and alcohols. As a fuel, both
ethanol-petrol and diesel-biodiesel blends are found to have
better anti-knock properties [1–5]. Ethanol blended petrol
and biodiesel blended diesel are found to have higher
octane and cetane numbers compare to unblended petrol
and diesel, respectively. Use of blended fuel also leads to
significant reduction in carbon monoxide (CO), and
unburned hydrocarbon (UHC) emissions [1–5]. In spite of
these advantages, due to technological limitations, percent-
age of ethanol in ethanol-petrol and biodiesel in biodiesel-
diesel blends can not be increased beyond a certain level.
Some of the problems associated with the use of ethanol
blended petrol and biodiesel blended diesel as fuels are the
following. (i) It causes corrosion of metallic components of
the engine [6–8]. (ii) It causes the blockage of fuel pipes,
valves and filters of vehicles engine [6, 9, 10]. (iii) Ethanol
forms a low boiling azeotrope with hydrocarbons, which
may increase the vapour pressure of blended fuel above the
permissible limit for the safe handling of fuel [11]. (iv) Low
energy content of ethanol and biodiesel as compared to
ethanol and diesel increases the consumption of fuel. Thus,
quantification of ethanol and biodiesel in ethanol-petrol and
biodiesel-diesel blends becomes an important issue to
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ensure the fuel quality of the blend. In literature, methods
based on gas and liquid chromatographic techniques [12–
14], infrared (IR) [15, 16], nuclear magnetic resonance
(NMR) [17, 18] are reported for the quantification of
ethanol and biodiesel in the ethanol-petrol and biodiesel-
diesel mixtures. Some of these methods are either too
elaborate requiring sample preparation steps, or limited in
their ability to quantify ethanol and biodiesel in a particular
range. Hence, in view of this, development of an analytical
method which is simple and capable of estimating ethanol
in ethanol blended petrol blend and biodiesel in biodiesel
blended diesel of any composition is relevant.

Petroleum products like diesel, petrol etc. contain
number of polycyclic aromatic hydrocarbons (i.e. naphtha-
lene, anthracenes, phenanthrenes, benzophenanthrenes, and
fluorene etc.) [19], porphyrins [20] and other compounds of
natural origin which are strongly fluorescent. Biodiesel
being derived from vegetable oils and animal fats are
also expected to contain fluorescent pigments and
molecules, which could act as intrinsic fluorescent
markers for a particular type of biodiesel. An analytical
technique based on the intrinsic fluorescence of petrol,
diesel and biodiesel is an attractive proposition because
fluorescence spectroscopy is a simple, sensitive and non-
destructive technique. However the presence of multiple
fluorophores at unknown concentration with overlapping
absorption and emission spectra make the systems
complex multifluorophoric. It is known that conventional
fluorescence spectroscopy can not be used for analysis of
such systems [21, 22]. Synchronous fluorescence spec-
troscopy (SFS) [23] and excitation emission matrix
fluorescence (EEMF) [24] are the two widely used
fluorescence techniques for the analysis of multifluoro-
phoric systems such as petroleum products [25–29] and
humic acids [22, 30, 31]. In SFS both the excitation and
emission monochromators are scanned simultaneously by
keeping a constant wavelength offset (Δλ) between them.
By using the optimum wavelength offset the synchronous
fluorescence reduces the spectral overlap by narrowing the
spectral bands and simplifies the spectra. The EEMF
produces the fluorescence spectra of a sample at various
excitation wavelengths and provides a “fingerprint” con-
sisting of a three dimensional diagram of emission,
excitation and fluorescence intensity.

The combination of fluorescence spectroscopy and
multivariate methods has not been used so far for the
analysis of ethanol-petrol and biodiesel-diesel blends. The
objective of the present work is to explore whether
synchronous fluorescence spectroscopy (SFS) and excita-
tion emission matrix fluorescence (EEMF) spectroscopy
along with multivariate methods like principal component
regression (PCR), partial least square (PLS), N-way partial
least square (N-PLS) and unfolded-PLS can be used for the

quantification of ethanol in the ethanol- petrol blend and
biodiesel in biodiesel-diesel blends.

Material and Methods

Materials and Sample Preparation

Ethanol, petrol, biodiesel (karanja) and diesel were procured
from the local sources in Chennai. The ethanol sample was
found to show some fluorescence which could be due to some
contamination. Since ethanol is fermented and extracted from
natural plant sources, the presence of trace amounts of plant
pigments cannot be ruled out. In the context of blending
ethanol with petrol for fuel applications, we preferred to use
the commercial grade ethanol instead of using ultrapure non-
fluorescent ethanol for creating chemometric calibration
models. A calibration set of 21 samples were made for both
ethanol-petrol and biodiesel-diesel blends by mixing ethanol
and biodiesel with petrol and diesel, respectively. Amount of
ethanol in ethanol-petrol blends and biodiesel in biodiesel-
diesel blends are given in the Table 1.

Instrument and Data Acquisition

Fluoromax 4 (Horiba Jobin Yvon) spectrofluorometer,
with a 150 W xenon lamp as excitation source, was
used for the fluorescence measurement. Band pass for
excitation and emission monochromator were kept at
4 nm. Synchronous fluorescence spectra were collected
in the excitation wavelength range of 250–600 and 250–
750 nm with an interval of 1 nm for the ethanol-petrol
and biodiesel-diesel blends, respectively. EEMF spectra
were collected in the excitation wavelength range of
250–570 and 250–750 nm with an interval of 5 nm and
in emission wavelength range of 260–580 and 260–
760 nm with an interval of 5 nm for ethanol-petrol and
biodiesel-diesel blends, respectively.

Principal Component Regression (PCR)

PCR is one of the most widely used multivariate
calibration method in chemometrics [32–35]. Its algo-
rithm is described as a two step procedure of principal
component analysis (PCA) followed by multi-linear
regression. In the first step, PCA decomposes the data
set, D, of independent variables as

D ¼ APT þ R1 ð1Þ

where A is the score matrix and P is the loading matrix
while R1 is the residual matrix containing the unexplained
variance of D. The linear regression model of dependent
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variables C and the score matrix A, whose columns are
orthogonal to each other, is given by the equation,

C ¼ AB1 þ R2 ð2Þ
where B1 is the PCR regression coefficient matrix and R2

is the residual matrix

Partial Least Square Regression (PLS)

PLS is another widely used method for making calibration
models [32, 35, 36] PLS algorithm searches for a set of
components which explains the maximum covariance
between the independent and dependent variables. It is
achieved by the simultaneous decomposition of both D
(independent variables) and C (dependent variables) data
set, followed by a regression model relating the two
decomposition models.

D ¼ EST þ R3 ð3Þ

C ¼ VZT þ R4 ð4Þ
where E and V are the score matrices, S and Z are the
loading matrices of the D and C block data set, respectively.

R3 and R4 are the residual matrices containing the
unexplained variances of D and C, respectively. The inner
relationship between the score matrices E and V is given by
the equation,

V ¼ EB2 þ R5 ð5Þ
where B2 is the PLS regression coefficient matrix and R5 is
the residual matrix.

N-Way Partial Least Square Analysis (N-PLS)

N-PLS is a generalization of PLS to work with the multi
way data sets [32, 37]. In three way PLS, three way array, X
(I×J×K), of independent and Y (I×M×N), of dependent
variables are decomposed simultaneously as,

X ¼ TGx WK �WJ
� �T þ Ex ð6Þ

Y ¼ UGY QN �QM
� �T þ FY ð7Þ

where X and Y are unfolded matrices of size (I×JK)
and (I×MN) respectively. T and U are the first mode
score matrices, WJ and QM are the second mode weight
matrices, WK and QN are the third mode weight matrices,

Table 1 Amount of ethanol in
ethanol-petrol and biodiesel in
biodiesel-diesel calibration sets

Ethanol-Petrol Calibration set Biodiesel-Diesel Calibration set

Sample Ethanol (ml) Petrol (ml) Ethanol (%) Biodiesel (ml) Diesel (ml) Biodiesel (%)

1 0.00 5.00 0.00 0.00 5.00 0.00

2 0.25 4.75 5.00 0.25 4.75 5.00

3 0.50 4.50 10.00 0.50 4.50 10.00

4 0.75 4.25 15.00 0.75 4.25 15.00

5 1.00 4.00 20.00 1.00 4.00 20.00

6 1.25 3.75 25.00 1.25 3.75 25.00

7 1.50 3.50 30.00 1.50 3.50 30.00

8 1.75 3.25 35.00 1.75 3.25 35.00

9 2.00 3.00 40.00 2.00 3.00 40.00

10 2.25 2.75 45.00 2.25 2.75 45.00

11 2.50 2.50 50.00 2.50 2.50 50.00

12 2.75 2.25 55.00 2.75 2.25 55.00

13 3.00 2.00 60.00 3.00 2.00 60.00

14 3.25 1.75 65.00 3.25 1.75 65.00

15 3.50 1.50 70.00 3.50 1.50 70.00

16 3.75 1.25 75.00 3.75 1.25 75.00

17 4.00 1.00 80.00 4.00 1.00 80.00

18 4.25 0.75 85.00 4.25 0.75 85.00

19 4.50 0.50 90.00 4.50 0.50 90.00

20 4.75 0.25 95.00 4.75 0.25 95.00

21 5.00 0.00 100.00 5.00 0.00 100.00
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EX and FY are the residual matrices of X and Y
respectively. The symbol⊗denotes the Kronecker product.
Gx is the unfolded matricized array of dimensions F×FF
where F is the number of retained latent variables. A
regression model connecting the two decomposition
models is given as

U ¼ TB3 þ R6 ð8Þ
where B3 is the regression matrix and R6 is the residual
matrix.

Unfolded-PLS

In the unfolded-PLS method [37] three-way array is
unfolded along the first mode and usual PLS regression
algorithm is applied to make the calibration model.

Measures of Calibration Model

The root mean square of calibration (RMSEC) [32, 35] a
measure of goodness of model’s fit to the data set, is
defined as,

RMSEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ypred � yref
� �2

n

vuuut ð9Þ

where ypred and yref are the predicted and the reference
value of the ith sample in calibration set, respectively and
n is the number of samples used. The root mean square
error of cross-validation (RMSECV) [32, 35] is a
measure of model’s ability to predict new samples. It is
defined as,

RMSECV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRESS

n

r
ð10Þ

where PRESS (sum of squares of prediction error) [35] is
given as,

PRESSk ¼
Xn
i¼1

ypred � yref
� �2 ð11Þ

The square of correlation coefficient (R2) a measure of
goodness of fit [38], is calculated as,

R2 ¼ 1�
Pn
i¼1

yref � ypred
� �2

Pn
i¼1

yref � ym
� �2 ð12Þ

In Eq. 9, 11, and 12 ypred and yref are the predicted and
the reference value of the ith sample and ym is the average
of the reference values.

Software Used

PCR, PLS, N-PLS and unfolded-PLS analysis were carried
out using PLS_Toolbox 5.0.3 written in MATLAB language.

Results and Discussion

Synchronous Fluorescence Spectroscopy (SFS)
and Excitation Emission Matrix Fluorescence (EEMF)
of Ethanol-Petrol and Diesel-Biodiesel Blends

SFS were recorded for all the samples of ethanol-petrol and
biodiesel-diesel calibration sets with various wavelength
offset values, the optimized Δλ value was found to be of
40 nm. It is in accordance of the earlier report which
showed that Δλ of 40 nm is appropriate for the analysis of
diesel [25] and petrol [29] samples. The synchronous
fluorescence spectra of ethanol-petrol and biodiesel-diesel
mixtures recorded with Δλ of 40 nm are shown in Fig. 1.
From the spectra (Fig. 1a) of ethanol-petrol mixture, it is
seen that, (i) the peak positions are blue shifted and (ii) the
SFS intensity values at 332, 346, 365, 383, 426 and 436 nm
decreases, with the increase in ethanol percentage. From the

Fig. 1 Synchronous fluorescence spectra of a ethanol-petrol and b
biodiesel-diesel blends at Δλ of 40 nm
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SFS plot (Fig. 1b) of biodiesel-diesel mixture it is seen that
the fluorescence intensity values at 420 nm and 444 nm
decreases with the increase in biodiesel concentration. For
both ethanol-petrol and biodiesel-diesel calibration set, inten-
sity value at any of the wavelength did not change linearly
over the entire range of ethanol and biodiesel concentration.
As a result intensity based univariate methods could not be
used for making the calibration models.

EEMF spectra were recorded for all the samples of ethanol-
petrol and biodiesel-diesel calibration set, contour plots of
ethanol, petrol, biodiesel and diesel are shown in Fig. 2
Unblended petrol showed highest fluorescence intensity
around excitation wavelength of 380 nm and emission
wavelength of 405 nm. With the increase in ethanol
concentration the contour maxima was found to be blue
shifted. For the pure diesel sample the maximum fluorescence
intensity was observed at the excitation wavelength of 400 nm
and emission wavelength of 430 nm. The maximum
fluorescence intensity for the pure biodiesel sample, which
was found to be 10 times lesser than that of diesel, was seen at
the excitation wavelength of 670 nm and emission wavelength
of 680 nm. From the Fig. 2 it is clearly seen that the diesel

and biodiesel samples contains different fluorescent active
components.

Data Arrangement

The SFS spectra with offset Δλ 40 nm for the 21 samples
of ethanol-petrol calibration set were collected in the
excitation range of 250–600 nm with an interval of 1 nm
which gives 351 data points. The data were arranged in a
two way array (sample×excitation), of dimension 21×351.
The SFS spectra of biodiesel-diesel set were collected in the
excitation range of 250–750 nm with an interval of 1 nm
which gives 501 data points which were arranged in two
way array of dimension 21×501.

EEMF spectra of ethanol-petrol calibration set were
collected in the excitation range of 250–570 and emission
range of 260–580 with an interval of 5 nm, which gives 65
data points each along the excitation and emission
wavelength axes. EEMF spectra of biodiesel-diesel set
were collected in the excitation range of 250–750 and
emission range of 260–760 with an interval of 5 nm, which
gives 101 data points each along the excitation and

Fig. 2 EEMF contour plots of a Petrol, b Ethanol, c Diesel and d Biodiesel
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emission wavelength axes. These EEMF data were
arranged in a three way array (sample x emission x
excitation), of dimension 21×65×65 and 21×101×101
for ethanol-petrol and biodiesel-diesel set, respectively. The
data sets for biodiesel-diesel calibration were larger than
those for ethanol-petrol because diesel and biodiesel
fluorescence appear in two separate regions of the spec-
trum, showing maximum intensity at 430 nm for diesel and
680 nm for biodiesel. The SFS data were used for PCR and
PLS analysis and EEMF data were used for N-PLS and
unfolded-PLS analysis.

Cross-Validation

Leave one out cross-validation [35] was used to find the
optimum number of factors. In this approach, a calibration
model is made using all the samples of calibration set
except for one and the model is used to predict the
concentration of the left out sample. This procedure is
repeated, so that every sample of the calibration set is left
out and predicted once. The predicted sum of squares
(PRESS) and root mean square error of cross validation

(RMSECV) values are calculated and plotted against the
number of factors (i.e. principal components or latent
variables). The number of factors giving minimum RMSECV
value is used to build the model.

Ethanol-petrol as well as biodiesel-diesel blends are
essentially two-component mixtures. If each of the component
components were a single fluorescent molecular species the
optimum number of factor that would be required for the PCR,
PLS, N-PLS and unfolded-PLS analysis of each systemwould
be two. However since each of these components are complex
multifluorophoric systems, the optimum number of factors
required to fit the data set and to have minimum RMSECV
values is expected to be more than two.

PCR and PLS Analysis

SFS data of ethanol-petrol and biodiesel-diesel blends were
mean-centered before the PCR and PLS analysis. From the
PRESS plots, given in Fig. 3a and b the optimum number
of factors were found to be 6 for the PCR and 5 for the PLS
analysis of ethanol-petrol and biodiesel-diesel blends In
order to verify the minimum number of factors required to

Fig. 3 a, b RMSECV versus number of factors, measured versus predicted c ethanol and d biodiesel concentration plots of PCR, PLS, N-PLS
and unfolded-PLS model for ethanol-petrol and biodiesel-diesel calibration set
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explain the variation in the data set, PCR and PLS models
were also cross-validated with other methods such as
venetian blind and contiguous cross validation approach,
the optimum number of factors in all the cases were found
to be 6 and 5 for PCR and PLS models, respectively.
Hence, PCR model of 6 factors and PLS model of 5 factors
were made for the ethanol-petrol and biodiesel-diesel
mixtures. The PCR and PLS models were found to explain
more than 99.9% variance of the spectral and concentration
data of both the calibration set. The predicted ethanol and
biodiesel concentrations of PCR and PLS models were
plotted against the measured concentrations of ethanol and
biodiesel and are shown in Fig. 3c and d, respectively.
Various measures of the PCR and PLS model for ethanol-
petrol and biodiesel-diesel sets are summarized in the
Tables 2 and 3 respectively. The low RMSECV, RMSEC
and R2 value close to one indicates the obtained PCR and
PLS models are highly robust.

N-PLS Analysis

Mean centered EEMF data of ethanol-petrol (21×65×65)
and biodiesel-diesel (21×101×101) blends were used to
make the N-PLS model. From the RMSECVand number of
factor plots, shown in Fig. 3a and b, the optimum numbers
of factors were found to be 4 and 6 for the ethanol-petrol
and biodiesel-diesel blends, respectively. The 4 factor N-
PLS model for the ethanol-petrol set was found to explain
90.7% and 99.9% variance of EEMF and concentration
data, respectively. The N-PLS model of 6 factors for the
biodiesel-diesel blends were found to capture 91.3% of
spectral data and 99.9% variance of concentration data. In
order to see the robustness of the model, predicted
concentration of ethanol and biodiesel were plotted against
the measured ethanol and biodiesel concentrations and are
shown in Fig. 3c and d, respectively. The low RMSECVand
RMSEC values and R2 value close to one indicates the
obtained N-PLS models are robust. Various measures of the
N-PLS model ethanol-petrol and biodiesel-diesel blends are
given in Tables 2 and 3, respectively. N-PLS calibration
models were also made with the EEMF data for emission
region between first and second order Rayleigh scattering.
For this purpose, the EEMF spectral region outside the

region of interest was set to zero intensity value. This
effectively removes the Rayleigh scattering for the data set
to be analyzed. The RMSECV values were 1.5 and 3.8 and
RMSEC values were 1.1 and 0.8 for the N-PLS models
made with scattering free EEMF data set of ethanol-petrol
and biodiesel-diesel blends, respectively, which shows that
the removal of scattering did not improve the model’s
robustness.

Unfolded-PLS Analysis

Two dimensional data sets of sizes 21×4225 and 21×10201
were obtained by unfolding the three way EEMF data of
ethanol-petrol (21×65×65) and biodiesel-diesel (21×101×
101) blends along the first mode, respectively. The optimum
number of factors from the RMSECV and number of factors
plot, given in Fig. 3a and b was found to be 5 for the ethanol-
petrol and 6 for the biodiesel-diesel mixtures. The unfolded-
PLS model for both sets of blended fuel explained 99.9%
variance of both spectral and concentration data. The
predicted and measured concentrations of ethanol and
biodiesel were plotted and are shown in Fig. 3c and d. The
various measures of the model for ethanol-petrol and
biodiesel-diesel blends, summarized in Tables 2 and 3,
shows that the obtained unfolded-PLS models are robust.

Prediction Ability of PCR, PLS, N-PLS and Unfolded-PLS
Models

In order to see the prediction ability of developed PCR,
PLS, N-PLS and unfolded-PLS calibration models, a
testing set of 8 samples containing 2, 7, 12, 18, 33, 54,
77 and 92% of ethanol and biodiesel in blended petrol and
diesel, respectively were used. The concentration predic-
tions made by the calibration models for the ethanol and
biodiesel are given in Tables 4 and 5, respectively. The root
mean square error of prediction (RMSEP) values for the
calibration models made for ethanol-petrol and biodiesel-
diesel blends are given in Tables 2 and 3, respectively. The
low RMSEP values indicate the obtained models are
capable of estimating the unknown ethanol and biodiesel
concentrations of blended fuels with a very small error in
the estimation.

Table 2 Measures of PCR, PLS, N-PLS and unfolded-PLS models for
the ethanol-petrol calibration set

PCR PLS N-PLS Unfolded-PLS

R2 0.999 0.999 0.999 0.999

RMSECV 1.60 1.37 1.48 1.45

RMSEC 0.65 0.79 1.13 0.88

RMSEP 0.56 0.52 1.48 0.69

Table 3 Measures of PCR, PLS, N-PLS and unfolded-PLS models for
biodiesel-diesel calibration set

PCR PLS N-PLS Unfolded-PLS

R2 0.999 0.999 0.999 0.999

RMSECV 1.42 1.18 3.89 4.15

RMSEC 0.91 0.90 0.95 0.54

RMSEP 0.86 0.86 0.55 0.52
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By taking the representative samples of ethanol,
petrol, biodiesel and diesel available in the market and
by using SFS and EEMF with multivariate methods,
calibration models were made for the quantification of
ethanol in ethanol-petrol and biodiesel in biodiesel-diesel
blends. Ethanol, petrol, biodiesel and diesel samples are
of natural origin, the composition of fluorescent active
components in these samples are expected to vary from
batch to batch. However a library of calibration plots can
be created by taking various combinations of, ethanol
and petrol, diesel and biodiesel which could make it
possible to estimate the ethanol in ethanol-petrol and
biodiesel in biodiesel-diesel blends. In addition, unlike
chromatographic methods which involve time consuming
sample preparation steps or the NMR based methods
where the cost associated with NMR instrument and its
application is high, the combination of fluorescence
spectroscopy and multivariate analysis gives a simple,
fast and cost effective way of finding the ethanol and
biodiesel content in ethanol-petrol and biodiesel-diesel
blends without presaparation. However, chromatographic,
NMR or IR based analytical methods are also precise in
estimating ethanol and biodiesel in blended fuel [12–18].

Conclusions

In the present work, quantification of ethanol and biodiesel
concentrations in the ethanol-petrol and biodiesel-diesel
blends for a particular batch of fuel were achieved by the
combination of synchronous fluorescence spectroscopy and
excitation emission matrix fluorescence with multivariate
methods like PCR, PLS, N-PLS and unfolded-PLS. The
square of the correlation coefficient (R2) values were found
to be close to one for all the four models for both the fuel
blends which shows that the measured and predicted
ethanol and biodiesel concentrations are in close correspon-
dence. The RMSEC and RMSEP values were less than 2%
which indicates that all the four calibration models fitted
the calibration data accurately and predicted the concen-
trations of the unknown samples with a small error of
predictions. Additionally, the present work has advantages
such as it is easier to use, cost-effective; do not involve
ethanol and biodiesel separation from the fuel blends. In
summary, all the four calibration models are highly
robust, however, PCR and PLS models made using the
SFS data of Δλ 40 nm has advantage over the EEMF
based N-PLS and unfolded-PLS model, because acquisi-

Table 4 Measured and the predicted ethanol concentration of the ethanol-petrol testing set

Measured ethanol
concentration (%)

Predicted ethanol concentration (%)

PCR PLS N-PLS Unfolded-PLS

2 2.55 2.23 4.32 1.88

7 7.87 8.00 9.31 7.46

12 11.44 11.42 10.78 11.51

18 17.48 17.71 15.95 17.51

33 33.74 33.64 33.92 33.23

54 54.46 54.44 53.63 54.34

77 77.28 77.32 77.21 76.99

92 91.82 91.82 91.62 93.72

Table 5 Measured and the predicted biodiesel concentration of the biodiesel-diesel testing set

Measured biodiesel
concentration (%)

Predicted biodiesel concentration (%)

PCR PLS N-PLS Unfolded-PLS

2 1.97 2.00 3.15 2.57

7 7.36 7.09 7.51 7.59

12 11.51 11.75 11.58 11.85

18 17.69 17.91 17.37 17.71

33 34.57 34.45 33.30 32.21

54 53.22 53.15 54.21 54.64

77 78.07 78.18 76.67 76.41

92 90.90 90.75 92.10 92.05
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tion of EEMF spectra is time consuming. The combina-
tion of SFS and EEMF with multivariate methods makes
a viable method for the estimation of ethanol and
biodiesel in blended fuels.
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